Demineralization Depth Using QLF and a Novel Image Processing Software
نویسندگان
چکیده
Quantitative Light-Induced fluorescence (QLF) has been widely used to detect tooth demineralization indicated by fluorescence loss with respect to surrounding sound enamel. The correlation between fluorescence loss and demineralization depth is not fully understood. The purpose of this project was to study this correlation to estimate demineralization depth. Extracted teeth were collected. Artificial caries-like lesions were created and imaged with QLF. Novel image processing software was developed to measure the largest percent of fluorescence loss in the region of interest. All teeth were then sectioned and imaged by polarized light microscopy. The largest depth of demineralization was measured by NIH ImageJ software. The statistical linear regression method was applied to analyze these data. The linear regression model was Y = 0.32X + 0.17, where X was the percent loss of fluorescence and Y was the depth of demineralization. The correlation coefficient was 0.9696. The two-tailed t-test for coefficient was 7.93, indicating the P-value = .0014. The F test for the entire model was 62.86, which shows the P-value = .0013. The results indicated statistically significant linear correlation between the percent loss of fluorescence and depth of the enamel demineralization.
منابع مشابه
Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملMonitoring the maturation process of a dental microcosm biofilm using the Quantitative Light-induced Fluorescence-Digital (QLF-D).
OBJECTIVE The aim of this study was to investigate whether Quantitative Light-induced Fluorescence-Digital (QLF-D) could monitor the degree of maturation of dental microcosm biofilms by observing the red fluorescence emitted from the biofilms. METHODS Dental microcosm the biofilms were grown on bovine enamel discs. They were initiated from human saliva, and then grown in 0.5% sucrose growth m...
متن کاملSuppressive effects of saliva against enamel demineralization caused by acid beverages
This study aimed to clarify the ability of the buffer systems of saliva to inhibit enamel demineralization after intake of an acid beverage. In the first experiment, titrable acidity tests were carried out. Ten milliliters of saliva stimulated by chewing gum base was obtained from 10 healthy adult subjects and the pH of each saliva sample was measured. The beverages used for the experiment were...
متن کاملApplication of quantitative light-induced fluorescence to determine the depth of demineralization of dental fluorosis in enamel microabrasion: a case report
Enamel microabrasion has become accepted as a conservative, nonrestorative method of removing intrinsic and superficial dysmineralization defects from dental fluorosis, restoring esthetics with minimal loss of enamel. However, it can be difficult to determine if restoration is necessary in dental fluorosis, because the lesion depth is often not easily recognized. This case report presents a met...
متن کاملEffects of Ion-Releasing Tooth-Coating Material on Demineralization of Bovine Tooth Enamel
We compared the effect of a novel ion-releasing tooth-coating material that contained S-PRG (surface-reaction type prereacted glass-ionomer) filler to that of non-S-PRG filler and nail varnish on the demineralization of bovine enamel subsurface lesions. The demineralization process of bovine enamel was examined using quantitative light-induced fluorescence (QLF) and electron probe microanalyzer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010